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X-ray scaling relations & ICM thermodynamics;
Including chemical evolution in simulations:
Metal Enrichment of the ICM;
Optical/near-IR properties of the galaxies.
The effect of AGN feedback.
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Different strategies to simulate clusters

SB, Dolag et al. 08;
Dolag, SB et al. 08,
for reviews
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The mass-temperature relation
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Use the By-model for the
ICM + hydrostatic
equilibrium:
(Finoguenov et al. '01;
Ettori et al. '03)

Nagai et al. ‘07

Carry out the same
mass estimates as in
Chandra data

(Vikhlinin et al. ‘05)

Good agreement between simulated and observed M-T,

once hydrostatic mass estimates used in simulations.



The Luminosity-Temperature relation
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Aowe gt al. ‘02:

L.-T relation reasonable, but up
to 80% of baryons in stars for
groups!

Muanwong et al ‘03:

No much bending at the scale of
groups.

SB et al ‘'04:

~ OK above 2 keV
Over-luminous groups and
too small scatter.



The Temperature Profiles

Tornatore et al. ‘'03; SB et aA.
'04; Roncarelli et al. ‘07; Kay et
al. ‘07:

Loken et al. ‘02; Nagai et aA. ‘07:

Cooling steepens T-profiles at
the centre;

Wrong in the core regions

OK at larger radii.

Pratt et al. ‘07; Leccardi &
Molendi ‘08:
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Hydro simulations of the ICM enrichment

Tornatore et al. ‘04, '07; Fabjan et al.’08
SB, Fabjan, Tornatore et al. ‘08 for a review

Implementation in the GADGET-2 code (Springel ‘05)

Model parameters:
IMF: Power-law IMF: ¢(m) ~ m (1) x=1.35: Salpeter 55; x=0.95:
Arimoto Yoshii 89
Multi-slope IMF (Kroupa 01)
Stellar lifetimes: Padovani & Matteucci '93; Maeder & Meynet ‘89
Metallicity-dependent stellar yields (SN-la, SN-II and AGB)

Velocity of galactic winds: v,,=500 km s (normal winds)
v,,=1000 km s' (strong winds; AY IMF)

Simulated clusters: 9 Lagrangian regions (Dolag et al. ‘08) containing
19 “clean” clusters with M. = (5x10'3 - 2x10"° h-'M

sun)




Maps of Iron distribution

Tornatore et al. ‘07
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Mock X-ray observations of ICM metallicity

Rasia et al. 2007
1 Ms exposure of a

~8 keV cluster

EW and spect.
estimators of Z._ and Z
quite close to each other
(unlike T,,and T

spec)'

Spect. measurement
overestimates Z:

Due to the multi-

component nature of the
ICM.

Bias related to the
limited XMM spectral
resolution.

arcmin




Profiles of Iron Abundance

Fabjan et al. ‘08
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Vikhlinin et al. ‘05; Chandra
observations of 16 nearby
relaxed clusters

Agreement with the slope
from Chandra data.

Preference for a standard
Salpeter IMF

Flattening at >0.1R;,,
(XMM: Snowden et al. 07)

never predicted

Highly desirable: comparison
btw Chandra & XMM
results.




Evolution of the ICM metallicity

. o Balestra et al. (2007)
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0.5
redshift

Observational data from
Chandra archive:
Balestra et al. ‘07
Maughan et al. ‘08

Metallicity evolution naturally
produced.

Test: halt by hand SF at z=1.

Metals produced at lower z by
long-lived stars

Far too strong metallicity
evolution

Need residual low-z SF to
“‘eat” metals in high-density
regions.




Evolution of the ICM metallicity

Reference - ‘ SF stopped
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The Sn-la rate

Rate of Sn-la per unit B-band luminosity
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Observational data:

zZ ~ 0: Mannucci et al. 07
z ~ 1.2: Sharon et al. 07
Z ~ (0.2-0.9: Gal-Yam et al. 07

Salpeter IMF favoured
by low-z data

Too high low-z rate from
excess of recent SF

Better agreement if SF
quenched at z<1.



The Color-Magnitude Diagram

Saro et al. ‘06

Bower et al.’92
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Feedback from BH accretion in GADGET

Springel, Di Matteo & Hernquist (2005).

Bondi accretion rate (related to the large-scale properties of the
gas distribution), with Eddington limit:

4 G "‘/{BH "'Ip

ér GT C

"W Edd =

P P YR - thermalized energy

Seed BHs with initial mass of 10° Mg

BHs accrete mass by swallowing of gas particles and merging.




The effect of AGN feedback

Sijacki et al. ‘07
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"Self-consistent” BH
feedback”

“QSO mode”: low-
efficiency thermal feedback

“Radio mode™: energy in
inflating bubbles.

(see talk by E. Puchwein)




The effect of the BH feedback

Fabjan et al. ‘08
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NN
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Quench star formation at z<3

Suppression of the
temperature spike;

ZF‘e/ZF‘e.@

Increase of the central

I NO 1’\G.\_
entropy;

AGN €,=0.5

Flattening of the metallicity
profiles for R>0.2R,,.




Producing the “cool core” structure
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AGN feedback: phase diagram

M, = 1.0 x10"* h-* Mg,
Gas within 0.2 R,
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The effect of the BH feedback
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Effect on the CMR:

Make it bluer, due to
lower metallicity of
galaxies;

BCGs older but still blue,
due to a lower metallicity.

Need to model the transition from the QSO to the “radio” mode:

more efficient to quench SF in BCGs!




Conclusions

Simulations are doing remarkably well outside cool-cores.
Inner temperature profiles & BCG colors = wrong cool cores.
Profiles and evolution of Z., nearly OK.

Shall we trust them until we have the right galaxies?

Suppress low-z star formation: required by the CMR and by the
Sn-la rate.

Need to be gentle — Prevent too strong metallicity evolution.
AGN feedback goes in the right direction. BUT:

Need to better understand cross-talk between widely
different (~1 pc vs. >100 kpc) scales;

Relative importance of different channels for energy
thermalization.




